[Cluster Analysis, Audio Signal Processing, Deep Learning Modeling]

· Cluster Analysis (k-Means, k-Medoids, EM Gaussian Mixture Model, Hierarchical, DBSCAN)

· Clustering Evaluation Metrics (Silhouette Index, Dunn Index, Davies-Bouldin Index, Calinski-Harabasz Index)

· Audio Signal Processing (Spectrogram, Mel-Frequency Cepstrum, Fast Fourier Transform, Wavelet Transform, Constant-Q Transform)

· CNN Layer (Fully-Connected, Convolutional, Pooling)

· Activation Function (Softmax, ReLU)

· Stochastic Gradient Descent (RMSProp)

· Regularization (Dropout)

· Transfer Learning (CNN Architecture - VGGNet)

· Residual Network

· Normalization (Batch Normalization)









[Cluster Analysis, Audio Signal Processing, Deep Learning Modeling]

· Audio Signal Processing (Spectrogram, Mel-Frequency Cepstrum, Fast Fourier Transform, Wavelet Transform, Constant-Q Transform)

· Deep Generative Model (Autoencoder, Variational Autoencoder, GAN)

· CNN Layer (Fully-Connected, Convolutional, Pooling)

· Activation Function (ReLU, Sigmoid, Leaky ReLU)

· Stochastic Gradient Descent (Adam)

· Regularization (Dropout)


· Cluster Analysis (k-Means, k-Medoids, EM Gaussian Mixture Model, Hierarchical, DBSCAN)

· Clustering Evaluation Metrics (Silhouette Index, Dunn Index, Davies-Bouldin Index, Calinski-Harabasz Index)






Previous
Previous

*Machine Learning 4 - [Feature Engineering, Statistical Learning Modeling, Deep Learning Modeling]

Next
Next

*Machine Learning 6 - [Evolutionary Algorithm, Deep Learning Modeling, Bayesian Network]